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20IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
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We present a search for flavor changing neutral currents via quark-gluon couplings in a sample
of single top quark final states corresponding to 2.3 fb−1 of integrated luminosity collected with
the D0 detector at the Fermilab Tevatron Collider. We select events containing a single top quark
candidates with an additional jet, and obtain separation between signal and background using
Bayesian neural networks. We find consistency between background expectation and observed data,
and set limits on flavor changing neutral current gluon couplings of the top quark to up quarks
(tgu) and charm quarks (tgc). The cross section limits at the 95% C.L. are σtgu < 0.20 pb and
σtgc < 0.27 pb. These correspond to limits on the top quark decay branching fractions of B(t →

gu) < 2.0 × 10−4 and B(t → gc) < 3.9 × 10−3.

PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Qk

The observation of electroweak production of single top
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quarks was reported in 2009 [1, 2]. Those measurements,
as well as the evidence for t-channel single top quark
production [3], focus on standard model (SM) production
of single top quarks. The single top quark final state
is sensitive to several models of physics beyond the
SM [4], in particular those in which flavor changing
neutral current (FCNC) couplings between a gluon, a
top quark, and up or charm quarks may be large.
Examples include models with multiple Higgs doublets
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such as supersymmetry [5–7], those with new dynamical
interactions of the top quark [8–10], or models in
which the top quark is a composite object [11] or
has a soliton structure [12, 13]. In principle, such
interactions can also be produced through SM higher-
order radiative corrections; however, their effects are
too small to be observed [5]. Stringent limits exist for
FCNC top quark couplings to photons and Z bosons
from studies of production and decay of top quarks [14–
17]. The first limits on gluon FCNC couplings to
the top quark were obtained in a D0 analysis based
on 0.23 fb−1 of integrated luminosity [18]. The CDF
Collaboration searched for FCNC production of single
top quarks, without extra jets, through gluon-quark
interactions [19, 20], using a dataset corresponding to
2.2 fb−1 of integrated luminosity [21]. The limits on
the FCNC couplings are κtgu/Λ < 0.018 TeV−1 and
κtgc/Λ < 0.069 TeV−1, where Λ is the scale of the
new interactions which generate these couplings (of order
1 TeV).

The FCNC coupling of a gluon to a top quark and a
light quark results in either s-channel production and
decay [Fig. 1 (a) and (d)] or in t-channel exchange
[Fig. 1 (b) and (c)] of a virtual particle. The largest
contribution to the production cross section is from
the diagram in Fig. 1 (a). The final state in each
case contains a top quark and a light quark or gluon,
a topology similar to SM t-channel single top quark
production. We do not consider the single top quark
final state without extra jets that was explored by the
CDF Collaboration [21] due to its different final state
topology and significantly smaller signal event yield for
a given coupling.

u,cg 

tg 

q q

u,c

g 

t

tq

g 

q u,c

tu,c

g g 

(a) (b)

(c) (d)

FIG. 1: Leading order Feynman diagrams for FCNC gluon
coupling between an up or a charm quark and a top quark.(a)
and (d) show the two s-channel diagrams for the tg final state
and the tq final state and (b) and (c) are the two t-channel
diagrams for the tq final state.

The FCNC couplings can be parametrized in a model-
independent way, using an effective Lagrangian [22, 23]
of the form:

LFCNC =
κtgf

Λ
gsf̄σµν λa

2
tGa

µν , (1)

where f = u or c, with u, c and t representing the
quark fields; κtgf defines the strength of the tgu or tgc
couplings; gs and λa are the strong coupling constant and
color matrices; σµν and Ga

µν are the Dirac tensor and
the gauge field tensor of the gluon. The FCNC single
top quark production cross section depends therefore
quadratically on the factor κtgf/Λ. For a coupling of
κtgf/Λ = 0.03 TeV−1, the next-to leading order (NLO)
cross sections at a top quark mass of 170 GeV are
σNLO

tgu = 1.15 pb and σNLO
tgc = 0.078 pb [24]. The top

quark decay branching fraction to a gluon and any quark
also depends quadratically on the factor κtgf/Λ [25], but
this branching fraction is negligible for coupling factors
considered in this analysis [23].

We search for FCNC production of single top quarks
in association with a quark or gluon, where the top quark
decays to a W boson and a b quark, and the W boson
subsequently decays to a lepton (electron or muon) and
a neutrino. The main backgrounds to this final state
are from W+jets production, including W + c-quarks
and W + b-quarks, with smaller contributions from tt̄,
SM single top quarks (tb + tqb), as well as multijets,
dibosons, and Z+jets production. We base the analysis
on the dataset and event selection from the single top
quark production observation Letter [1], using 2.3 fb−1 of
integrated luminosity collected with the D0 detector [26]
at the Fermilab Tevatron Collider.

The detector has a central tracking system, consisting
of a silicon microstrip tracker and a central fiber
tracker, both located within a 1.9 T superconducting
solenoidal magnet, with designs optimized for tracking
and vertexing at pseudorapidities |η| < 3 and |η| <
2.5, respectively [27–29]. A liquid-argon and uranium
calorimeter has a central section covering pseudora-
pidities |η| up to ≈ 1.1, and two end calorimeters that
extend coverage to |η| ≈ 4.2, with all three housed
in separate cryostats [30]. An outer muon system, at
|η| < 2, consists of a layer of tracking detectors and
scintillation trigger counters in front of 1.8 T toroids,
followed by two similar layers after the toroids [31].

We select events containing a lepton, missing
transverse energy (6ET ), and two to four jets with
transverse momentum pT > 15 GeV and |η| < 3.4
(allowing for jets from gluon radiation), with the leading
(highest pT ) jet additionally satisfying pT > 25 GeV [32].
We require 20 < 6ET < 200 GeV for events with two jets
and 25 < 6ET < 200 GeV for events with three or four
jets. Events must contain only one isolated electron with
pT > 15 GeV and |η| < 1.1 (pT > 20 GeV for three- or
four-jet events), or one isolated muon with pT > 15 GeV
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and |η| < 2.0. The multijets background, where a jet
is misidentified as an isolated lepton, is kept to approxi-
mately 5% of the total background by requiring the scalar
sum of all transverse energies, HT (lepton, 6ET , alljets), to
be greater than 110 to 160 GeV, depending on the lepton
flavor and jet multiplicity, and by requiring that the 6ET

is not colinear with the axes of the lepton or the leading
jet in the transverse plane. To enhance the fraction of top
quark events, one of the jets is required to originate from
a b hadron, as identified through a neural network (NN)
b-tagging algorithm [33]. To partially reject background
from W + bb̄, tt̄, and SM single top quark events, each
event is required to contain only one b-tagged jet (vetoing
double-tagged events), in contrast to SM single top quark
analyses.

We model the FCNC signals and SM single top
quark background with the SingleTop Monte Carlo
(MC) generator [34], using CTEQ6M parton distribution
functions [35, 36]. The alpgen leading-order MC event
generator [37], interfaced to pythia [38], is used to model
tt̄, W+jets, and Z+jets background, while pythia is
used to model diboson (WW , WZ and ZZ) production.
We set the mass of the top quark to 170 GeV, and
use the CTEQ6L1 parton distribution functions [35, 36].
We use geant [39] to simulate the response of the D0
detector to MC events. To model the effects of multiple
interactions and detector noise, data from random pp̄
crossings are overlaid on MC events. The SM single
top quark, tt̄, diboson and Z+jets backgrounds are
normalized to their predicted cross sections [40–42].
The W+jets background normalization and jet angular
distributions are obtained from data samples without
b-tagging requirements, and its flavor composition is
determined from data samples with different numbers of
b-tagged jets. We model the background from multijets
production using data containing lepton candidates that
fail one of the lepton identification requirements, but
otherwise resemble the signal events. In the muon
channel, where a secondary muon in a jet is misidentified
as an isolated muon, this is accomplished by reversing the
tight isolation criterion, whereas in the electron channel,
where a jet is misidentified as an electron, we reverse the
tight electron identification criteria [43, 44].

We select a total of 3735 lepton+jets data events with
only one b-tagged jet. The sample composition is given
in Table I.

We further improve the sensitivity to FCNC through
an application of Bayesian neural networks (BNN) [44–
46], with settings identical to those detailed in Ref. [1].
A BNN is an average over many individual neural
networks [47] (100 networks are used in this analysis),
where the parameters for each network are sampled from
the Bayesian posterior density distribution of the entire
network parameter space.

We use 54 discriminating variables, a subset of
those used in each channel of the single top quark

TABLE I: Event yields with uncertainty for each jet
multiplicity for the electron and muon channels combined.
The FCNC signals are each normalized to their observed cross
section upper limits. The uncertainty on the total background
includes correlations amongst sources.

Source 2 jets 3 jets 4 jets
FCNC signal

tgu 34 ± 4 16± 3 5± 1
tgc 54 ± 7 23± 4 7± 2

Background
W+jets 1660 ± 146 560± 54 154± 15
Z+jets and dibosons 204 ± 34 72± 14 22± 6
SM single top 112 ± 15 46± 7 14± 3
tt̄ 152 ± 24 277± 42 278± 41
Multijets 184 ± 47 66± 15 27± 5

Total background 2312 ± 170 1021± 84 495± 53
Data 2277 958 500

observation analysis [1] plus those from the previous
FCNC analysis [18]. The set of variables comprises
individual object and event kinematics, top quark
reconstruction, jet width, and angular correlations.
Figure 2 compares the observed data to the background
model for six illustrative discriminating variables. Object
kinematics, such as the leading jet pT , and event
kinematics, such as the invariant mass of the all-jets
system, help separate the FCNC signals from the W+jets
background. Jet reconstruction variables, such as the
width in η of the second leading jet, provide additional
separation of light quark jets and heavy flavor jets.
Angular variables such as the cosine between lepton
and leading jet, or the φ difference between lepton and
6ET , separate FCNC interactions from all backgrounds.
Reconstruction of the top quark by combining the
W boson with one of the jets discriminates against the
W+jets background. The top quark mass reconstructed
with the leading jet separates FCNC signal events (where
the leading jet typically comes from the top quark decay)
from all backgrounds including tt̄ (where the leading jet
comes from one of the two top quark decays).

Since their kinematics are similar, the two FCNC
processes are combined into a single signal for training
the BNN, each normalized to the same coupling.
Separate BNNs are trained for each choice of lepton
flavor (electron or muon), jet multiplicity (2, 3, or 4),
and data-taking period, twelve in total. Each utilizes
23 or 24 variables, selected from the list of 54, to
provide the highest sensitivity for each analysis channel.
Figure 3 shows the comparison between background and
data for all twelve BNN discriminants combined. A
Kolmogorov-Smirnov test comparing the observed data
to the background sum in Figs. 3(a) and 3(b) gives values
of 0.38 and 1.0, respectively, demonstrating that the
background model reproduces the data well.

Systematic uncertainties on the modeling of signal
and background are described in Ref. [44], with main
uncertainties being from corrections to the jet energy



6

(jet1) [GeV]
T

p
0 50 100 150 200 250

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

100

200

300

400
(a)

(jet1) [GeV]
T

p
0 50 100 150 200 250

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

100

200

300

400
  -1DØ 2.3fb

FCNC tgu 
FCNC tgc 
W+jets 
SM tb+tqb 

 tt
Multijets 

M(alljets) [GeV]
0 100 200 300 400 500

Y
ie

ld
 [E

ve
nt

s/
10

G
eV

]

0

100

200

300
 -1DØ 2.3 fb(b)

M(alljets) [GeV]
0 100 200 300 400 500

Y
ie

ld
 [E

ve
nt

s/
10

G
eV

]

0

100

200

300

(jet2)ηWidth
0 0.1 0.2 0.3 0.4 0.5

Y
ie

ld
 [E

ve
nt

s/
0.

01
]

0

100

200

300

400  -1DØ 2.3 fb(c)

(jet2)ηWidth
0 0.1 0.2 0.3 0.4 0.5

Y
ie

ld
 [E

ve
nt

s/
0.

01
]

0

100

200

300

400

Cos(lepton,jet1)
-1 -0.5 0 0.5 1

Y
ie

ld
 [E

ve
nt

s/
0.

04
]

0

50

100

150
 -1DØ 2.3 fb(d)

Cos(lepton,jet1)
-1 -0.5 0 0.5 1

Y
ie

ld
 [E

ve
nt

s/
0.

04
]

0

50

100

150

)
T

E (lepton,φ∆
0 1 2 3

Y
ie

ld
 [E

ve
nt

s/
0.

08
]

0

50

100

150

200  -1DØ 2.3 fb(e)

)
T

E (lepton,φ∆
0 1 2 3

Y
ie

ld
 [E

ve
nt

s/
0.

08
]

0

50

100

150

200

(W,jet1) [GeV]topM
100 150 200 250 300 350

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

50

100

150

200
 -1DØ 2.3 fb(f)

(W,jet1) [GeV]topM
100 150 200 250 300 350

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

50

100

150

200

FIG. 2: Comparison of the background model to data for
several discriminating variables summed over all analysis
channels: (a) pT of the leading jet, (b) invariant mass of
the system of all jets, (c) width in pseudorapidity of the
second leading jet, (d) cosine of the angle between the leading
jet and the lepton, (e) φ separation between the lepton
and 6ET , and (f) top quark mass reconstructed from the
reconstructed W boson and the leading jet. The FCNC
signals are normalized to cross sections of 5 pb to visualize
them clearly, and W+jets includes the smaller backgrounds
from Z+jets and dibosons.
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FIG. 3: Comparison of the background model to data for
the FCNC discriminant summed over all analysis channels,
(a) for the whole discriminant range and (b) only the high
discriminant region, where the hatched region gives the
uncertainty on the background sum. The bins have been
ordered by their signal to background ratio and the FCNC
signals are each normalized to a cross section of 5 pb in (a) and
to their observed limits in (b). W+jets includes the smaller
backgrounds from Z+jets and dibosons.

scale and the b-tag modeling, with smaller contri-
butions arising from MC statistics, corrections for jet-
flavor composition in W+jets events, and from the
normalization of W+jets, multijets, and tt̄ production.
The total uncertainty on the background is (8–16)%,
depending on the analysis channel. For jet energy scale,
b-tag modeling and W+jets modeling, we vary not only
the normalization but also consider effects on the shape of
the final discriminant. When setting limits on the FCNC
couplings, an additional signal cross section uncertainty
of 8.8% from the NLO calculation is included [24].

Since the data are consistent with the background
expectation, we set upper limits on the FCNC cross
sections and couplings using a Bayesian approach [48].
Following the analysis strategy of our previous work [18],
we form a two-dimensional Bayesian posterior density
for the cross sections and for the square of the
FCNC couplings, using the BNN distributions for data,
background, and signals. Systematic uncertainties are
taken into account with Gaussian priors, including
correlations among bins and signal and background
sources. We choose priors that are flat and non-negative
in the FCNC couplings squared and hence in the FCNC
cross sections. The posterior density as a function of the
FCNC cross sections σtgu and σtgc is shown in Fig. 4(a).
We similarly form a two-dimensional Bayesian posterior
density as a function of the (κtgf/Λ)2, as shown in
Fig. 4(b), adding systematic uncertainties to the FCNC
cross sections.

One-dimensional posterior densities as a function
of σtgu and σtgc are derived from the general two-
dimensional posterior, by integrating over the σtgc or
σtgu axes, respectively. One-dimensional posteriors are
similarly derived as a function of (κtgu/Λ)2 and (κtgc/Λ)2

and are shown in Fig. 5. This procedure keeps the
measurement free of theoretical assumptions concerning
the relationship between the two FCNC cross sections
and couplings. For each quantity, we also compute
expected limits by replacing the count in data in each
bin by the background sum. The expected posterior
densities for (κtgu/Λ)2 and (κtgc/Λ)2 are also shown
in Fig. 5, together with the 95% C.L. limits. The
observed limits are below the expected limits, consistent
with Fig. 3(b), which shows that the data count is
below the background expectation for several bins in
the high BNN output region. Since the FCNC decay
branching fraction is proportional to the square of the
coupling, the limits on the couplings can be translated
into decay branching fraction limits based on the NLO
calculation [25]. The limits on cross sections, couplings
and branching fractions are summarized in Table II.

In summary, we have presented a search for FCNC
interactions in the gluon coupling of top quarks to up
quarks or charm quarks. Using a sample of 2.3 fb−1

of integrated luminosity recorded by the D0 experiment
at the Tevatron Collider at Fermilab, we set limits on
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FIG. 4: Bayesian posterior probability as a function of (a)
the σtgu and σtgc cross sections and (b) the squares of the
couplings.

TABLE II: Observed 95% C.L. upper one-dimensional limits
on the FCNC cross sections, couplings, and branching
fractions.

tgu tgc
Cross section 0.20 pb 0.27 pb
κtgf/Λ 0.013 TeV−1 0.057 TeV−1

B(t → qg) 2.0 × 10−4 3.9 × 10−3

the couplings of κtgu/Λ < 0.013 TeV−1 and κtgc/Λ <
0.057 TeV−1, without making assumptions about the tgc
and tgu couplings, respectively. The corresponding limits
on top quark decay branching fractions are B(t → gu) <
2.0× 10−4 and B(t → gc) < 3.9× 10−3. These branching
fraction limits are the most stringent and improve on the
previous best limits by factors of two for B(t → gu) and
1.5 for B(t → gc) [21]. They improve on D0’s previous
result by a factor eight as a result of a larger data set
and significant improvements in analysis [18].
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